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Time Dilation, as Manifested in Special Relativity, Explained with 

Euclidean Geometry 
 

Part 1 

By Bob Duhamel 

Before starting, I have to point out that you will find many explanations about 
special relativity in various venues. These explanations fall into two categories. 
The first comes from physicists who use math to explain special relativity. These 
are almost always correct. The second comes from laypeople who explain special 
relativity by showing how our perspective is affected by the speed of light. These 
are always wrong. Light will take longer to travel farther distances (propagation 
delay). However, that does not result in the effects of special relativity. Such 
explanations usually work when objects are traveling apart. However, they fail 
when objects travel toward each other. Correct explanations work regardless of 
the direction of travel. Special relativity results from how different frames of 
reference align when observers move relative to each other in four-dimensional 
spacetime. Propagation delay must be added to the effects of special relativity to 
calculate when and where an event will be seen. 

This essay explains the effects of special relativity using Euclidean geometry, 
which the average educated person can understand. This is possible because 
special relativity is a consequence of the alignments of frames of reference in four-
dimensional spacetime where time is the fourth dimension.  

Using Euclidean geometry to visualize the effects of special relativity is not new. 
Hermann Minkowski developed such a system shortly after Einstein published his 
theory. However, it is difficult for the uninitiated to understand Minkowski's 
system. I will show a system based on simple Euclidean geometric principles that 
the average educated person can understand. This system has some difficulties 
that require careful examination to understand the results. For example, the 
numbers don't add up in this first essay unless we include length contraction in 
the calculations. Since we don't address length contraction in this first essay, we 
must assume that length contraction takes place. In the second essay, length 
contraction is shown to be an obvious consequence of relative motion, but without 
careful examination, events don't seem to align visually in space and time. 
However, modifying the graphics to give a useful visual representation of time 
dilation is easy.  

In this first essay, we will look at imaginary everyday events. By extrapolating these 
events into a spacetime continuum with time as a fourth dimension, we will see 
that time dilation is inevitable when observers move relative to each other.  
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Preceding special relativity 

Before Einstein developed his theory of special relativity, physicists found conflicts 
between observations and the expected outcomes of certain experiments. The 
most famous was the Michelson-Morley experiment.1 At the time, physicists 
assumed that if you shined light beams in different directions, the light would 
appear to travel at different speeds due to the Earth's motion through space. 
Michelson and Morley didn't get the expected result. No matter how they rotated 
their apparatus, the light appeared to be going at the same speed.  

Hendrik Lorentz and George FitzGerald postulated that the Michelson-Morley 
apparatus contracted in the direction it was moving through space. They theorized 
that as matter moves through space, it moves through a substance called 
luminiferous aether. Just as a soap bubble distorts in the wind,  matter moving 
through the aether should "flatten" in the direction of motion. They developed the 
following formula to quantify this length contraction. Today, this is called the 
Lorentz factor or gamma. 

 

Where: 

 

c 

v 

= 
= 
= 

Lorentz factor (gamma) 
Speed of light in a vacuum (empty space)2 
The velocity of an object 

Even though modern theories eliminate the aether, the Lorentz factor now applies 
to special relativity. 

Many special relativity formulas incorporate the Lorentz factor. However, the 
reciprocal of the Lorentz factor (alpha) applies to Euclidean geometry, such that 
we can use it to visualize time dilation and length contraction in special relativity.  

 

The reciprocal of the Lorentz factor or alpha 

 
1 https://en.wikipedia.org/wiki/Michelson-Morley_experiment 
2 No insult intended, but during my live lectures, I discovered that many people think I’m talking about a 

vacuum cleaner when I talk about a vacuum. In scientific parlance, a vacuum is a place devoid of matter, 

such as outer space. 
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The Lorentz factor and right triangles 

The Lorentz factor alpha relates to a right triangle in Euclidean geometry. The 
length of the hypotenuse represents the speed of light (c), and the opposite 
represents the object's speed (v). Alpha represents the relative length of the 
adjacent compared to the hypotenuse; multiply the length of the hypotenuse by 
alpha to get the length of the adjacent.  

 

A right triangle where the length of the hypotenuse represents the speed of light 

(c)  and the opposite represents the velocity of an object (v). Multiply the speed 

of light by alpha to get the length of the adjacent (base of the triangle). Compared 

to the hypotenuse, the length of the adjacent is proportional to time dilation and 

length contraction in special relativity. 

In special relativity, alpha represents the length contraction or time dilation 
factors. If you plug the velocity of an object into the alpha formula, the result is the 
factor to apply to the object's length at rest to get its length at speed. Likewise, 
alpha tells how much slower time passes for a moving object from a stationary 
point of view.3 

For example, c is always 299,792,458 meters per second. So if v is 149,896,229 
meters per second (one-half c), alpha is 0.866602504. Here is a right triangle 
representing that calculation.  

 
3 This is the reciprocal of time dilation. Time dilation (lengthening of time, quantified by gamma) measures 

how much longer a moving clock takes to reach a particular time seen from a stationary frame of 

reference. Alpha measures how much slower that clock "ticks." 
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This right triangle represents alpha, where v is one-half the speed of light. The 

result is an Alpha of 0.867. Multiply alpha by c to get the length of the adjacent. 

This demonstrates that the Lorentz factor can be plotted using familiar Euclidean 
geometry and a right triangle. In special relativity, the value of the adjacent is the 
factor to apply to the length of an object at rest to find its length at speed. 
Therefore, if we substitute the hypotenuse's length with the object's length at rest, 
the adjacent becomes the object's length at speed.  

Assume an object is one meter long at rest. Traveling at ½ the speed of light, the 
object is 86.7 centimeters long (the length is contracted only in the direction of 
travel). 

 

Substituting the length of the hypotenuse with the length of an object at rest, the 

adjacent becomes the object's length at speed. For example, an object one meter 

long at rest becomes 86.7 centimeters long (0.867 meters) when traveling at ½ 

the speed of light. In the above diagram, ½ meter represents a velocity of ½ the 

speed of light.  

This calculation and triangle also apply to time dilation in the same way. If an 
observer could watch a clock pass by at half the speed of light, he or she would 
see that clock ticking at only 86.7 percent of its ticking speed at rest. 
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The following illustration uses a speed of 70.7 percent of the speed of light. This 
is because if we apply that speed to the geometry, we get a 45-45-90 triangle.  

 

A 45-45-90 triangle has one 90-degree angle and two 45-degree angles. 

The hypotenuse of a 45-45-90 triangle is 1.414 (the square root of 2) times the 
length of the adjacent or the opposite. The adjacent and the opposite are the same 
lengths and are 0.707 times the length of the hypotenuse—the adjacent and the 
hypotenuse forming a 45-degree angle. 

At 70.7 percent of the speed of light, gamma is 1.414, and alpha is 0.707. A 
stationary observer would see the length of an object moving at 70.7 percent of 
the speed of light shortened in the direction of motion to 70.7 percent of its length 
at rest. Likewise, the stationary observer would see a clock moving at 70.7 percent 
of the speed of light ticking at 70.7 percent of the speed that it ticks at rest. Using 
a velocity of 0.707c, we can quantify the effects of special relativity without 
calculating gamma or alpha; we already know the easily remembered solutions.  

Minkowsky diagrams 

Once Einstein developed his theory of special relativity, Hermann Minkowski 
developed a method to illustrate four-dimensional spacetime using two-
dimensional graphs. To accommodate this, Minkowski incorporates all three 
space dimensions into a single dimension. His graphs plot time on the vertical axis 
and space (all three dimensions) on the horizontal axis. Minkowski uses standard 
vector analysis to compare a stationary observer (traveling through time only) to 
a moving observer (moving through space and time).  
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Minkowski's diagrams show the speed of time and the speed of light with equal 
magnitude. Therefore, a (massless) object traveling through space at the speed of 
light for a certain amount of time is represented by two nose-to-tail arrows 
(vectors4) of equal length placed at a right angle. These vectors become the 
adjacent and opposite of a triangle where the hypotenuse forms a 45-degree angle 
and has a length of 1.414 times the length of either of the other two sides. 
Therefore, an object traveling at the speed of light is represented by a line angled 
45 degrees to the time or space axes.  

 

The speed of light represented with two vectors (horizontal and vertical arrows) 

representing the speed of light through space and the speed of light through time, 

respectively. 

I have mentioned Minkowsky's methods because they are already widely used in 
physics. However, Minkowsky's methods are unintuitive to those of us who are 
accustomed to regular distance/time graphs. Fortunately, a normal distance/time 
graph is not only more intuitive for most people but also demonstrates why time 
dilation and length contraction must occur if you add a fourth dimension (time) to 
our familiar three-dimensional space. 

 

 

 
4 A vector is a visual element used to represent quantities that cannot be represented with a single number. 

Typically, a vector represents a direction and a magnitude. For example, an aircraft traveling at 100 km 

per hour on a course of 270 degrees cannot be quantified with a single number. However, for example, 

it can be represented on a drawing surface by an arrow with a length of 100 mm pointing to the left, 

assuming that up represents zero degrees on a compass. 
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Let's get started 

Now that we have established the relationship of special relativity to Euclidean 
geometry, let's imagine some everyday experiences and see how they lead us to 
special relativity.  

The following illustrations show how frames of reference change when we move 
through space. The math that physicists apply to special relativity also applies to 
these effects. Special relativity is a complex topic, so I will be precise in my 
language and repeat myself occasionally. 

Einstein's assumptions 

Einstein made some crazy assumptions about space and time that are true. He 
based his theories on the mathematics of the Lorentz transformation, which can 
be applied to a continuum with four dimensions. We will examine this as a space-
time continuum, where time is the fourth dimension. 

We can measure our movements using a coordinate system when we move about 
in space. We can assign a grid in three dimensions where any point in space can 
be defined in that grid. First, of course, we must begin with an arbitrary starting 
point, but from there, we can describe any point in space relative to that starting 
point. For example, a particular point could be described as "right 3 meters, 
forward 2.5 meters, and up 1 meter." It's like navigating a big city. To get from Point 
A to Point B, you start at your current location, go so many streets in one direction, 
then so many streets in another. You may be able to go in a straight line between 
the points, but street-by-street descriptions based on a grid of streets are the usual 
way to navigate a city. 

There is another way to define your coordinate system. If you are moving, you have 
a coordinate system that is aligned with the direction you are moving. Those 
coordinates are right, left, forward, backward, up, and down. Let's say someone 
else is going in a different direction. His or her coordinate system is aligned at an 
angle to yours. Their right, left, forward, and backward are different directions than 
yours.5  

This is where Einstein bases his theory of relativity. Two people (observers, as 
Einstein called them), moving in different directions, have coordinate systems 

 
5 You are already familiar with this—"is that my right or your right?" 
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aligned at an angle to each other. Without external references outside their 
coordinate systems, Einstein imagined how these observers would see each 
other's motion. Then, he imagined that time is another dimension that follows the 
same rules as the three space dimensions. The only difference between space and 
time is that we can control our movement through space; however, we always 
move at a constant "speed" through time. So he questioned how two observers 
would see each other move through time as one or both observers moved through 
space.  

First, let's look at how two moving observers see each other move through space. 

Let's say you have two airplanes traveling together. Right, left, forward, and 
backward are the same directions for each; they have identical frames of 
reference.  

 

Two airplanes traveling in the same direction have identical frames of reference. 

Now, let's say one airplane makes a 90-degree turn. The two airplane's frames of 
reference are now rotated 90 degrees to each other.  
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Two airplanes traveling in different directions have frames of reference angled 

to each other. 

Either airplane's frame of reference is aligned with the direction it travels and is 
independent of the other airplane's frame of reference. 

Let's assume those airplanes, Airplane 1 and Airplane 2, travel together at a 
constant speed of 100 kilometers per hour. The airplanes are flying between two 
layers of cloud, so observers aboard the airplanes cannot see the ground or the 
sky; they have no external clues to tell them what direction or how fast they are 
going. The only visual references they have are each other. 

At some point, airplane 1 turns left and travels on a new course angled 45 degrees 
to the original. How do observers in these airplanes see each other moving?  
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The observer in Airplane 2 looks to his or her left and sees Airplane 1 moving away. 
He or she also sees airplane 1 falling behind. 

 

When Airplane 1 changes course, the observer in Airplane 2 sees it move away 

and fall behind. 

Both airplanes still travel at 100 km/h but in different directions. For Airplane 1 to 
remain abreast of Airplane 2, Airplane 1 would have to speed up to about 141 km/h 
(100 km/h x 1.414).  

What does Airplane 1 see? 

Let's assume that the observer in Airplane 1 didn't know he or she had turned. For 
all he or she knows, it is Airplane 2 that turned 45 degrees to the right. The observer 
in Airplane 1 looks to the right and sees Airplane 2 moving away. He or she also 
sees airplane 2 falling behind. Even though both airplanes travel at the same 
speed, each observer sees the other Airplane falling behind. It doesn't matter 
which Airplane turned. Each observer travels at the same speed but in different 
directions and sees the other airplane falling behind.  

After six minutes, both airplanes have traveled 10 kilometers but in different 
directions. The observer in Airplane 2 looks to the left and sees that Airplane 1 has 
traveled to the left for 7.07 kilometers and has fallen behind by 2.93 kilometers.  
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After six minutes, from Airplane 2's frame of reference, Airplane 1 has moved 

away, to the left by 7.07 kilometers, and has fallen behind by 2.93 kilometers. 

From Airplane 1's frame of reference, it appears that Airplane 2 has moved away 
to the right at a 45-degree angle. It also appears that airplane 2 has traveled to the 
right for 7.07 kilometers and fallen behind by 2.93 kilometers. Each Airplane has 
flown 10 kilometers, but to each observer, it appears the other Airplane has fallen 
behind by 2.93 kilometers. 
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From Airplane 1's frame of reference, Airplane 2 has moved away to the right by 

7.07 kilometers and has fallen behind by 2.93 kilometers. 

Now, let's see what happens if we swap out one of the space dimensions and 
replace it with the time dimension. Time is just another dimension with no special 
consideration other than we move through time at a constant speed. Therefore, 
we can treat time exactly like any of the three dimensions of space.  

Let's park the airplanes so they are no longer moving through space. Are they 
moving? Yes. Since everything constantly moves through time, the airplanes are 
moving through time. 

Let's start again with the planes now motionless in space but traveling together 
through time. In the following diagram, we find that time is one axis, and the other 
axis is space. We have consolidated all three dimensions of space into one axis 
simply because we can't illustrate all four dimensions on a flat plane. 
Nevertheless, we can make this illustration work if we only travel in two 
dimensions. So now we have the airplanes traveling from bottom to top through 
time. Traveling through space is shown by moving the airplanes left and right. 
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The airplanes are stationary, so they are not moving through space, but 
they are moving together through time. 

Now, let's put Airplane 1 on a dolly and push it sideways for some distance. 

Here's where Einstein made a crazy assumption. The assumption is that time, 
being another dimension, must act the same as any of the three dimensions of 
space. In addition, time must have the same relationship to the three space 
dimensions that they have to each other. In the original scenario, when Airplane 1 
moved away from Airplane 2, Airplane 1 changed its course through space. 
Consequently, Airplane 1 moved away from and fell behind Airplane 2. Now, we 
have swapped dimensions, and the airplanes travel together through time. So, 
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when Airplane 1 is pushed away from Airplane 2, it must also change its course 
through space and time (spacetime). 

 

By moving, Airplane 1 changes course through spacetime. 

In the original scenario, when Airplane 1 changed its course, it fell behind Airplane 
2. In this new scenario—with time acting like space—when Airplane 1 changes its 
course through spacetime, it must fall behind Airplane 2 in time. 
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When Airplane 1 changes its course through space and time, from Airplane 2's 

frame of reference, Airplane 1 moves away from Airplane 2 in space and falls 

behind Airplane 2 in time. 

Here's where Einstein made another crazy assumption. Airplane 2 travels through 
time, but Airplane 1 travels through space and time. Einstein assumed that both 
observers must perceive that they are stationary and that the other airplane is 
moving. Therefore, each observer must perceive that he or she is moving through 
time only and must see the other Airplane as the one moving through space and 
time. From Airplane 1's frame of reference, it is Airplane 2 that is moving away and 
falling behind in time. 
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From Airplane 1's frame of reference, it is Airplane 2 that is moving away and 

falling behind in time. 

At this point, we assume that if either observer could see the clock on the 
instrument panel of the other Airplane, he or she would see the other Airplane's 
clock running slower than his or her own. This is time dilation. 

Let's reiterate that because that is the essence of special relativity. While traveling 
together in space, when one Airplane moves away from the other in space, each 
observer sees the other Airplane falling behind in space. Likewise, when the 
airplanes move together in time when one moves away from the other in space, 
each observer sees the other Airplane fall behind in time. 

To make a significant difference, you must travel at tremendous speeds. For 
example, to rotate your course through spacetime by 14 degrees, you must travel 
through space at 25 percent of the speed of light. To rotate your course through 
spacetime by 45 degrees, you must travel through space at 70.7 percent of the 
speed of light. If two observers diverge at 70.7 percent of the speed of light, each 
will see the other falling behind in time by 2.93 seconds for every ten seconds of 
travel. However, at ordinary speeds, the difference is too small to perceive. 

This is the essence of time dilation. It may sound absurd, and Einstein never 
explained it quite this way. He described it mathematically. However, based on 
work by Lorentz and others, his math applies to a coordinate system with four 
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dimensions where time is treated identically to the three space dimensions. Here, 
I have illustrated graphically what Einstein described mathematically. 

Time dilation may be hard to fathom, but it has been observed to occur with 
subatomic particles traveling near the speed of light.6 In addition, GPS satellites, 
moving at about 14,000 kilometers per hour relative to the Earth, have atomic 
clocks programmed to compensate for time dilation to keep them in sync with 
ground-based atomic clocks. 

You may find some explanations about time dilation that say each observer sees 
the other observer's clock running slower because it takes longer for the light from 
each clock to reach the observers as they get farther apart. However, propagation 
delay is not the cause of time dilation. Time dilation results from the alignment of 
the different frames of reference. The propagation delay must be added to time 
dilation to calculate how each observer would see the other Airplane's clock. As 
the observers move away from each other, each observer would actually see the 
other airplane's clock running slower than time dilation predicts. When the 
airplanes move closer together, the effect of propagation delay reverses; the 
observers would see each other's clocks running faster than time dilation 
predicts.7 In this illustration, we ignore propagation delay to simplify the example. 

Now, let's see what happens when the airplanes come back together. 

Suppose that in the original scenario, after 1/2 hour, Airplane 1 makes a 90-degree 
turn back toward the original course. Airplane 1 now travels along a course angled 
45 degrees toward the original course. What happened to its frame of reference? 
It rotated clockwise. Where is Airplane 2 from Airplane 1's perspective now? 
Airplane 1 is now traveling toward Airplane 2 and sees Airplane 2 up ahead.  

 

 

 

 
6 The video, Time Dilation, an Experiment with Mu-Mesons (https://youtu.be/rbzt8gDSYIM), shows how 

the experiment was done. 
7 The stationary observer would see the approaching obsers’s clock tiching faster than time dilation 

predicts but he or she would still see it ticking slower than his or her own clock.  
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After traveling for one-half hour (and 50 kilometers), Airplane 1 turns back 

toward the original course. Now, Airplane 2 appears to be ahead of Airplane 1. 

When Airplane 1's frame of reference rotates at the turnaround point, Airplane 2 
goes from behind Airplane 1 to ahead of Airplane 1.  

Let's stop and examine this for a moment. It is essential to understand how time 
dilation works. Imagine you are the observer in Airplane 1. As you travel away from 
Airplane 2, you must look back over your right shoulder to see Airplane 2 as it 
appears to have fallen behind. Think about what you will see as your airplane turns 
back toward the original course. As you turn, you will see airplane 2 sweep around 
until it is in front of you (at about the one o'clock position). Imagine it again. 
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Airplane 2 appears to go from behind to in front of you. Airplane 2 did nothing. It 
was your turn that changed your frame of reference. 

After another 1/2 hour, airplane 1 intercepts the original course but is now 29.3 
kilometers behind Airplane 2. As a result, Airplane 1 will now always see Airplane 
2 about 30 kilometers ahead and can never catch up as long as both airplanes 
maintain a speed of 100 km per hour and Airplane 2 never changes its course.  

Of course, the observer in Airplane 2 now sees Airplane 1 about 30 kilometers 
behind. Airplane 2 traveled 100 kilometers, as did Airplane 1. However, having 
deviated from a straight course through space, Airplane 1 lost ground to Airplane 
2. 
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If Airplane 1 returns to the original course after diverging for a half hour, it will 

lose about 30 kilometers to Airplane 2. Airplane 1 has traveled 100 kilometers in 

the hour it took for the total deviation but has only traveled 70.7 kilometers along 

the course that Airplane 2 has traveled. 

Now, let's get back to the new scenario.  

Let's say Airplane 1 is pushed away from Airplane 2 at 70.7 percent of the speed 
of light for five minutes. At the end of five minutes, the observer in Airplane 1 will 
see that Airplane 2 has fallen behind in time by 1.465 minutes. 
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After traveling through space at 70.0 percent of the speed of light for five 

minutes, Airplane 1 sees that Airplane 2 has fallen behind in time by 1.465 

minutes. 

Now, let's push Airplane 1 back toward Airplane 2, again at 70.7 percent of the 
speed of light. When Airplane 1 reverses direction, the observer in Airplane 1 will 
see Airplane 2 ahead in time by 3.964 minutes.  
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When Airplane 1 reverses course through space, the observer in Airplane 1 sees 

Airplane 2 move ahead in time. Airplane 2 Is now 3.964 minutes ahead of Airplane 

1. 

Let's stop and take a look at that again. When Airplane 1 reaches the turnaround 
point after traveling for five minutes, the observer in Airplane 1 sees that the clock 
in Airplane 2 has only ticked off 3.535 minutes. Of course, the observer in Airplane 
2 sees the same phenomenon looking at Airplane 1's clock. The observer in 
Airplane 2 sees that the clock in Airplane 1 has only ticked off 3.535 minutes. Each 
observer sees that the other observer's clock is ticking slower than his or her own. 
This is what we expect from time dilation. 

However, when Airplane 1 reverses course, the observer in Airplane 1 sees the 
clock in Airplane 2 jump ahead. Just as in the first scenario, where the observer in 
Airplane 1 saw Airplane 2 swing ahead in space, in the second scenario, the 
observer in Airplane 1 sees Airplane 2 swing ahead in time. Airplane 2 appears to 
zoom through 5.429 minutes, ending up 3.964 minutes ahead of Airplane 1. 

Now, let's see what happens when Airplane 1 returns to its original position in 
space next to Airplane 2. The observer in Airplane 1 finds that Airplane 2's clock is 
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2.93 minutes ahead of the clock in Airplane 1. Both Airplanes have traveled 
through 10 minutes of time, yet Airplane 1 finds itself 2.93 minutes behind Airplane 
2. 

 

If Airplane 1 moves away from Airplane 2 at 70.7 percent of the speed of light and 

then returns taking 10 minutes for the round trip, Airplane 1 will fall behind 

Airplane 2 in time by 2.93 minutes. Airplane 1 traveled 10 minutes during its trip 

but only 7.07 minutes along Airplane 2's timeline. 
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This graphically illustrates how time dilation must occur when objects move 
relative to each other and compares it to an experience most people can relate to. 
However, it is only half the story.  

Airplane 1 has clearly gone through a full 10 minutes of time in its frame of 
reference but has only gone through 7.07 minutes of time according to Airplane 
2's frame of reference. Yet it seems that both airplanes' clocks register 10 minutes.  

This is no different from the first scenario. In that case, both airplanes traveled 100 
kilometers, yet Airplane 1 had only traveled 70.7 kilometers along the course taken 
by Airplane 2. If we look closer, we see we are comparing apples and oranges. To 
say Airplane 1 has traveled only 70.7 kilometers, we have to measure its progress 
from Airplane 2's frame of reference. The scenario helps us visualize special 
relativity but is not the whole story.  

The rest of the story is length contraction. 

At this point, we need to accept length contraction on faith. Otherwise, we must 
enter a long discussion to explain the cause of length contraction (which we will 
do in part two of this essay). For now, let's accept that when an object moves as 
viewed from a stationary frame of reference, that object is contracted in the 
direction of motion. For example, if you see a 10-meter-long airplane fly by at 70.7 
percent of the speed of light, it will appear flattened in the direction of travel to 
7.07 meters long. 

Of course, you can't tell who's moving. If you pass by a 10-meter-long airplane at 
70.7 percent of the speed of light, that airplane will still be contracted to 7.07 
meters. You can't tell if the airplane is moving if you are moving, or if you are both 
moving. 

This doesn't only go for moving objects. It goes for space. If you are moving 
through space, it appears space is moving past you. That space is contracted in 
the direction of motion. If you travel to an object 100,000,000 kilometers away at 
70.7 percent of the speed of light, it will seem that you traveled only 70,700,000 
kilometers to reach it. 

Including length contraction 

Let's replay the second scenario, but this time, when we push Airplane 1 away from 
Airplane 2, let's aim to reach a point in space 90,000,000 kilometers away, traveling 
at 70.7 percent of the speed of light. From Airplane 2's frame of reference, 
assuming the observer in Airplane 2 could see Airplane 1 throughout its trip 
without propagation delay, the trip will take five minutes.  
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Airplane 2's Perspective 

From Airplane 2's frame of reference, Airplane 1 takes five minutes to reach an 

object 90,000,000 kilometers away at 70.7 percent of the speed of light. 

However, the observer in Airplane 1 finds that it only takes 3.535 minutes to reach 
the destination. Why? Because the observer in Airplane 1 sees space going by at 
70.7 percent of the speed of light. At this speed, space is contracted by a factor of 
0.707, contracting 90,000,000 kilometers to 63,600,000 kilometers. Therefore, at 
70.7 percent of the speed of light, Airplane 1 reaches the destination in only 3.535 
minutes, according to its clock. 
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Airplane 1's perspective 

Due to length contraction, Airplane 1 reaches an object 90,000,000 away in only 

3.535 minutes, traveling at 70.7 percent of the speed of light. From Airplane 1's 

frame of reference, the distance is only 63,600,000 kilometers. (Note that this 

graph shows Airplane 1 moving even though the observer in Airplane 1 should 

perceive Airplane 1 as stationary. This is to illustrate that the observer in Airplane 

1 will perceive his or her motion through space by observing objects in space 

passing by.) 

If the observer in Airplane 2 could observe the trip without propagation delay, he 
or she would see Airplane 1 travel 90,000,000 kilometers and take five minutes to 
complete the journey. However, if he or she could see the clock in Airplane 1, the 
clock would have ticked off only 3.535 minutes, just as predicted by time dilation. 

Airplane 1 makes the return trip in 3.535 minutes, also traveling only 63,600,000 
kilometers. From Airplane 1's frame of reference, its round trip was 127,200,000 
kilometers and took 7.07 minutes. From Airplane 2's frame of reference, Airplane 
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1's round trip was 180,000,000 kilometers and took 10 minutes. Both observers 
will see that Airplane 1's clock registered 7.07 minutes and Airplane 2's clock 
registered 10 minutes.  

 

Airplane 2's perspective 

From Airplane 2's frame of reference, Airplane 1 travels a total of 180,000,000 

kilometers in five minutes. However, Airplane 1's clock has only registered 7.07 

minutes. Airplane 1 is 2.93 minutes behind Airplane 2. 

Now, let's look at how the observer in Airplane 1 sees Airplane 2. Remember that 
the observer in Airplane 1, the moving airplane, sees his or her airplane as 
stationary and everything else moving. Also, remember that the observer in 
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Airplane 1 sees space contracted where the observer in Airplane 2 does not. The 
observer in Airplane 1 sees Airplane 2 zip away in the opposite direction that 
Airplane 2 sees Airplane 1 go. However, since Airplane 1 sees space contracted, 
the observer in Airplane 1 sees Airplane 2 travel to a distance of only 63,600,000 
kilometers. Since the observer in Airplane 1 also sees the clock in Airplane 2 
running slower, he or she only sees Airplane 2's clock tick off 2.49 minutes during 
the trip.  

Remember that when Airplane 1 reverses course, the observer in Airplane 1 sees 
Airplane 2 jump ahead in time. In this scenario, if the observer in Airplane 1 could 
see the clock in Airplane 2 in without propagation delay, he or she would see the 
clock jump ahead to 7.51 minutes. 

Recall that Airplane 2 remains in one frame of reference, whereas Airplane 1 jumps 
from one frame of reference to another at the turnaround point. The clock in 
Airplane 2 is not jumping ahead. Instead, airplane 1 jumps from a frame of 
reference where the clock in Airplane 2 has registered 2.49 minutes to another 
frame of reference where the clock in Airplane 2 has already reached 7.51 minutes. 
The 5.02 minutes between are skipped when Airplane 1 jumps to the second frame 
of reference. If we don't want to imagine Airplane 1 jumping from one frame of 
reference to another, we can imagine Airplane 1's frame of reference rotating 
during the turnaround. In that case, the observer in Airplane 1 sees the clock in 
Airplane 2 speeding through 5.02 minutes in the time it takes for the turnaround. 
Nevertheless, from Airplane 1's frame of reference, Airplane 2 goes from 2.53 
minutes behind in time to 2.53 minutes ahead during the turnaround. 

Airplane 2 takes another 2.49 minutes to complete the round trip. The observer in 
Airplane 1 sees the clock in Airplane 2 register 2.49 minutes for the outbound leg, 
skip 5.02 minutes for the turnaround, and register another 2.49 minutes for the 
return leg. At the end of the trip Airplane 2's clock has registered 10 minutes. 
However, the clock in Airplane 1 has registered only 7.07 minutes. 
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The observer in Airplane 1 sees Airplane 2 zip away for 2.49 minutes and then zip 

back for another 2.49 minutes. However, Airplane 2's clock jumps ahead by 5.02 

minutes at the turnaround point. When Airplane 2 returns, Airplane 1 has 

traveled only 7.07 minutes through time, but Airplane 2 has traveled 10 minutes 

through time. Airplane 1 finds itself 2.93 minutes behind Airplane 2. 
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To reiterate, the observer in Airplane 2 sees Airplane 1 zoom away to a point 
90,000,000 kilometers away and back, taking 10 minutes for the round trip. 
However, the clock in Airplane 1 only registers 7.07 minutes. The observer in 
Airplane 1 only sees the trip as 63,600,000 each way and thus sees the trip take 
7.07 minutes. Both observers agree that Airplane 1's clock shows 7.07 minutes 
and Airplane 2's clock shows 10 minutes. The observer in Airplane 1 sees Airplane 
2 zip away to a point 63,600,000 kilometers away and return. The total trip takes 
7.07 minutes by Airplane 1's clock. If the observer in Airplane 1 could see Airplane 
2's clock, he or she would see the clock jump ahead by 5.02 minutes at the 
turnaround point. When Airplane 2 returns, Airplane 1's clock registers 7.07 
minutes, but Airplane 2's clock registers 10 minutes. Both observers again agree 
that Airplane 1's clock registered 7.07 minutes and Airplane 2's clock registered 
10 minutes. We had to account for both time dilation and length contraction to get 
everyone to agree. 

The twins paradox 

Notice that this solves the supposed twins paradox. The twins paradox presumes 
that there is a pair of twins. One twin rides a spaceship to some point in space and 
then returns, traveling at tremendous speed. Alpha Centauri is the usual 
destination at a distance of 4.37 light years. The other twin remains on Earth. Let's 
say the traveling twin travels at half the speed of light. At that speed, the traveling 
twin will age at 86.6 percent of the rate of the homebound twin. Therefore, after 
the round trip, the traveling twin will have aged only 15.1 years compared to the 
earthbound twin, who has aged 17.5 years. 

The paradox appears to arise because the two frames of reference must be 
equivalent. Therefore, each twin should observe the other twin aging more slowly 
than him or herself. This corresponds to the original scenario when the airplanes 
are traveling apart, where each observer sees the other airplane falling behind. 
Since each twin must see the other aging more slowly, at the end of the round trip, 
each twin must be 2.34 years younger than the other. However, as we have already 
seen, when the traveling twin reverses direction, he or she jumps from a frame of 
reference, where the earthbound twin is behind in time, to another frame of 
reference, where the earthbound twin is ahead in time. As long as the earthbound 
twin remains stationary, the traveling twin can never catch up to the earthbound 
twin in time. 

Let's look at this again to be sure we are following it. In the original scenario, when 
Airplane 1 turned back toward the original course, the observer in Airplane 1 saw 
Airplane 2 sweep around from behind to ahead. Airplane 1 could never make up 
the ground lost by deviating from the original course. In the second scenario, when 
Airplane 1 was pushed back toward Airplane two, its frame of reference rotated in 
spacetime from one where Airplane 2 was behind in time to a new frame of 
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reference where Airplane 2 was ahead in time. Airplane 1 could never make up for 
the lost time as long as Airplane 2 didn't move. 

In the twins paradox, when the traveling twin reverses course, his or her frame of 
reference rotates from one where the earthbound twin is behind in time to one 
where the earthbound twin is ahead in time. The traveling twin can never recover 
the lost time as long as the earthbound twin remains stationary. Each twin will see 
the other aging more slowly as long as they remain in inertial frames of reference, 
meaning frames of reference that are not changing velocity (speed or direction). 
When the traveling twin reverses direction, he or she is no longer in an inertial 
frame of reference but in an accelerating frame of reference. Once he or she 
settles on the new course back to Earth, he or she is in a different inertial frame of 
reference than the one he or she was in during the outbound leg of the journey. 
Therefore, the traveling twin ends up at a younger age than the stationary twin 
because he or she occupies two different inertial frames of reference during the 
trip.  

Some say the solution to the twins paradox is that the traveling twin accelerates 
during the trip, whereas the earthbound twin doesn't. As we can see, this is correct 
because acceleration rotates your frame of reference. In each scenario, one 
observer accelerates, whereas the other doesn't. That acceleration rotates the 
associated frame of reference in space or spacetime. Therefore, acceleration 
changes your frame of reference to one where space and time don't line up with 
the original frame of reference. Hence, when one twin travels whereas the other 
doesn't, the traveling twin falls permanently behind the stationary twin in age by 
accelerating to reverse course. 

Some others say that acceleration is unnecessary to solve the twins paradox. Their 
argument assumes each twin carries a clock. They then assume a second traveler 
is already on the return course with his or her own clock. The traveling twin and 
the second traveler pass at the turnaround point, where the second traveler 
synchronizes his or her clock with that of the traveling twin. When the second 
traveler arrives back at Earth, we find his or her clock is 2.34 years behind the 
stationary twin's clock. No acceleration required. This is also correct. The same 
two frames of reference are involved. The traveling twin accelerates to jump to the 
returning frame of reference. The second traveler is already there. It works either 
way. 

Conclusion 

In this discussion, I applied Euclidean geometry and relatable experiences to 
Einstein's theory of special relativity. As shown, everyday experience comes close 
to demonstrating time dilation. If the fourth dimension of time is equivalent to the 
three dimensions of space, time dilation must occur when one object moves 
relative to another. However, this results in a paradox if length contraction isn't 
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also applied. Therefore, length contraction must also occur. Einstein made these 
postulations with nothing to back them other than they were compatible with 
experiment (such as the lack of results from the Michelson-Morley experiment). 
They are also compatible with the math developed by Lorentz and FitzGerald to 
quantify length contraction. Other than that, there is no reason to insist that time 
and space are equivalent. Math proves nothing unless experiment confirms it. 
However, modern experiments and practical application agree with Einstein's 
theories.  


